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Strong Induction, Tips for Proof Writing
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How do we perform the inductive step?

Assume  and  are true for any arbitrary positive integer ,P(1), P(2), …, P(k) k

that under this assumption  is also true.P(k + 1)
and show

Remark:

• In “weak” induction to prove  we use only .P(k + 1) P(k)

• In “strong” induction to prove  we can use , , ,  in addition to .P(k + 1) P(1) P(2) … P(k − 1) P(k)

Strong induction is more powerful as:
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• If  is present in factorisation of ,p1 (q1 − p1)

Let  and   .P = p2 . p3 . …pm Q = q2 . q3 . … . ql

it will divide , which is not possible as they are q1

distinct primes.
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State your game plan: Whenever possible, explain the general line of reasoning, e.g.,

“We use strong induction” or “We argue by contradiction”, etc.

Explain your reasoning: Good proofs usually look like an essay with some equations thrown in. 

Do not write long sequence of expressions without explanation.

Some tips on writing good proofs. (Taken from “Maths for CS” by Lehman & Leighton.)

Read a lot: Read proofs from solutions and textbook examples.
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Finish: Do not abruptly quit the proof. In the end, tie everything together and explain 

why the original claim follows.

Simplify: Proof with a fewer logical steps is a better proof than a long, complicated proof.

Don’t be lazy: Use words such as “obviously”, “clearly”, etc., sparingly. Explain why you 

think something is true. 

Keep a linear flow: The steps of your argument should follow one another in a clear, 

sequential order.


